600-cell


All Transforms - Page 11
${{{{{ T} _4}} {{{{{{ T} _2} _4} _4} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _0} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _4} _4}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _0} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _4} _4}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _0} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _4} _5}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{1}& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _6} _0} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _4} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _0} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _4} _6}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{1}& 0& 0& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _4} _7}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _4} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _4} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _3}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _5} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ 0& 0& 0& 1\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _1} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _1} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _5} _4}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _1} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _5} _5}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _2} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _2} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _5} _6}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _2} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _7}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _2} _3}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _5} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _2} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _5} _9}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _2} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _5} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _2} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _6} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& -{1}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _2} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _6} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _2} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _6} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& 0& 1& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _2} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _6} _3}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _6} _4}}} = {\left[\begin{array}{cccc} -{1}& 0& 0& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _6} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _6} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _6} _6}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _3} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _6} _6}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& 1\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _3} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _6} _7}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _6}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _6} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _6} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _7} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _6} _3} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _7} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _7} _2}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ 1& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _6} _4} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _7} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _7} _6}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _7} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _7} _7}}} = {\left[\begin{array}{cccc} 0& 0& 0& 1\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _4} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _7} _8}}} = {\left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _7} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _4} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _7} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _7} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& -{1}& 0& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _4} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _8} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _8} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _5} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _8} _1}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ 1& 0& 0& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _8} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& 0& -{1}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _8} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _5} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _8} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _8} _3}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _5} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _8} _4}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _8} _5}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _8} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _5} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _8} _6}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _8} _7}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& 1& 0& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _8} _8}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _8} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& -{1}& 0& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _8} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _8} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _9} _0}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _9} _0}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{1}& 0& 0& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _9} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _9} _1}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _6} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _9} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _9} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _9} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _9} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _4} _9} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _9} _5}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _9} _5}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _9} _6}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{1}& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _6} _7} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _9} _7}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _7} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _9} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _7} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _4} _9} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _4} _9} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _0} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& 0& 1& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _0} _0}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _3}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _0} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _0} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _8} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _0} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _8} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _0} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _6} _9} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _0} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _0} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _7}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _0} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _6} _9} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _1} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _1} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _1} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _6} _9} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _1} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _0} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _1} _3}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _0} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _1} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _0} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _1} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _0} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _1} _4}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _0} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _1} _5}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _0} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _1} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _0} _6}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _1} _7}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ 1& 0& 0& 0\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _0} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _1} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _0} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _1} _9}}} = {\left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _0} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _2} _0}}} = {\left[\begin{array}{cccc} 0& 0& 0& -{1}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _1} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _2} _0}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _1} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _2} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _1} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _2} _1}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{1}& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _7} _1} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _2} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _1} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _2} _3}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& 1& 0& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _1} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _2} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _1} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _2} _4}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{1}& 0& 0& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _1} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _2} _5}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _1} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _2} _6}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _1} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _2} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _2} _7}}} = {\left[\begin{array}{cccc} 0& 0& -{1}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _2} _8}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& -{1}& 0& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _2} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& 0& 0& 1\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _2} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _2} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _3} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _3} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _3} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _3} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _3} _3}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _2} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _3} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _3} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _3} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _3} _7}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _3} _3}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _3} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _3} _8}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _3} _9}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _7} _3} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _3} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _4} _0}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _4} _0}}} = {\left[\begin{array}{cccc} 0& 0& -{1}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _3} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _4} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _4} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _4} _2}}} = {\left[\begin{array}{cccc} 0& 0& 0& 1\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _4} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _4} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _4} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _4} _4}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _4} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _4} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _4} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _4} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _4} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _4} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _7} _4} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _4} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _4} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _5} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _4} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _5} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _7} _4} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _5} _1}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _5} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _5} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _5} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _5} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _5} _3}}} = {\left[\begin{array}{cccc} 0& -{1}& 0& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _6}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _5} _6}}} = {\left[\begin{array}{cccc} 0& 0& 1& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _5} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& -{1}& 0& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _5} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _5} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& 0& -{1}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _6} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _3}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _6} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _7}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& 1& 0& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _6} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _8}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _7} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _6} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _6} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _7} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _3}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _7} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _7} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _7} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _6}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _7} _3}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _7} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _7} _3}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _7} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _7} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _7} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _7} _5}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _8} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _7} _6}}} = {\left[\begin{array}{cccc} 0& 0& 0& 1\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _8} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _7} _7}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& 0& 1& 0\end{array}\right]}} = {{{{{ T} _3} _7} _8} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _7} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _8} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _7} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _8} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _8} _0}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{{{ T} _3} _7} _8} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _8} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _8} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _8} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _8} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _8} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _8} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _8} _5}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& -{1}& 0& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _7} _8} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _8} _5}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{1}& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _7} _9} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _8} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _9} _0}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _9} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _9} _3}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& -{1}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _9} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _9} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _9} _5}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& 0& -{1}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _5} _9} _5}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _5} _9} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _7} _9} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _9} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _7} _9} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _5} _9} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _0} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _0} _0}}} = {\left[\begin{array}{cccc} 0& 0& 1& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _0} _1}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{1}& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _8} _0} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _0} _2}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _0} _3}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _0} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _6}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _0} _6}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 1& 0& 0& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _0} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{1}& 0& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _0} _7}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _0} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _0} _7}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _0} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& -{1}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _0} _8}}} = {\left[\begin{array}{cccc} 0& 1& 0& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _0} _9}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _1} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _8} _1} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _1} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _1} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _1} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _1} _1}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 1& 0& 0& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _1} _2}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _8} _1} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _1} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ 0& 0& 1& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _1} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _1} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _2} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _1} _5}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& 1\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _1} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _1} _7}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _1} _9}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& 0& -{1}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _2} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _2} _0}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _2} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _2} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& 0& -{1}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _2} _1}}} = {\left[\begin{array}{cccc} 0& 0& 0& -{1}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _2} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _2} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _2} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _2} _4}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _3} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _2} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _2} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _2} _6}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _3} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _2} _7}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _2} _7}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _2} _8}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _2} _9}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _7}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _3} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _3} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _3} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _3} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _3} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& 0& -{1}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _3} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _3} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _3} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _3} _6}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _3} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _3} _8}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _4} _6}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _3} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _4} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _4} _0}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _4} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _4} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _4} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _4} _1}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{1}& 0& 0& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _4} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _4} _2}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _4} _3}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _4} _4}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _4} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _4} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _4} _6}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& 0& 0& -{1}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _5} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _4} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _4} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _5} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _4} _9}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _0}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _2}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& 0& -{1}& 0\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _3}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _4}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _5} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _6} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _5}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& 1& 0& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _6} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _5} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _7} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _6} _2}}} = {\left[\begin{array}{cccc} 0& 0& 1& 0\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _7} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _6} _4}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{1}& 0& 0& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _7} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _6} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ 0& 0& 0& 1\end{array}\right]}} = {{{{{ T} _3} _8} _7} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _6} _7}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _7} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _6} _9}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ 0& -{1}& 0& 0\end{array}\right]}} = {{{{{ T} _3} _8} _7} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _7} _0}}} = {\left[\begin{array}{cccc} 0& 0& 0& 1\\ 1& 0& 0& 0\\ 0& 0& -{1}& 0\\ 0& -{1}& 0& 0\end{array}\right]}} = {{{{{ T} _3} _8} _7} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _7} _2}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _7} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _7} _3}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _7} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _7} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& 0& 1& 0\end{array}\right]}} = {{{{{ T} _3} _8} _7} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _7} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _7} _7}}} = {\left[\begin{array}{cccc} 0& 0& 0& 1\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _8} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _7} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _7} _8}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _7} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _4}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _8} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _8} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _8} _2}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _8} _3}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _8} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _8} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _8} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _8} _7}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _8} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _8} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _8} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _8} _9}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _9} _1}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _9} _7}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _8} _9} _8}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _9} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _8} _9} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _9} _2}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _3}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _0} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _9} _4}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _0} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _9} _4}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _9} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& 1& 0& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _9} _6}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _6} _9} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _0} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _0} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _6} _9} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _1} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _6} _9} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _0} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _0} _2}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _4}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _0} _4}}} = {\left[\begin{array}{cccc} \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _0} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& 0& 1& 0\end{array}\right]}} = {{{{{ T} _3} _9} _1} _6}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _0} _5}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _0} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _8}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _0} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _1} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _0} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _0} _8}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _1}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _1} _0}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _2} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _0}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _2} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _1}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _2}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _5}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _1} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _2} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _3}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _1} _4}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _4}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _2} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _1} _5}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& 0& -{1}& 0\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _9} _3} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _1} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _3} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _1} _6}}} = {\left[\begin{array}{cccc} 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _9} _3} _2}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _1} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _3} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _3} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _8}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& 0& 0& 1\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _3} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _1} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{1}& 0& 0\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _3} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _0}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _3} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _2} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _3} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _2}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 1& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _9} _3} _9}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _2} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _4} _0}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _3}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _4} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _2} _4}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _4} _2}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _2} _4}}} = {\left[\begin{array}{cccc} \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _4} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _2} _5}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _4} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _5}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _4} _5}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _4} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _7}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}& 0\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _4} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _2} _8}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 0& 1& 0& 0\end{array}\right]}} = {{{{{ T} _3} _9} _4} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _2} _9}}} = {\left[\begin{array}{cccc} 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ 1& 0& 0& 0\end{array}\right]}} = {{{{{ T} _3} _9} _4} _9}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _1}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0\\ -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _0}$
${{{{{ T} _3}} {{{{{{ T} _2} _7} _3} _2}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _1}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _2}}} = {\left[\begin{array}{cccc} 0& -{1}& 0& 0\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _3}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _5} _3}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _5}}} = {\left[\begin{array}{cccc} \frac{1}{2}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _4}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _6}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}\\ -{\frac{1}{2}}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _5}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _3} _8}}} = {\left[\begin{array}{cccc} \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\\ 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _6}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _8}}} = {\left[\begin{array}{cccc} 1& 0& 0& 0\\ 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\\ 0& \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _7}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _3} _9}}} = {\left[\begin{array}{cccc} 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& \frac{1}{2}& 0\\ \frac{1}{2}& \frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _8}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _3} _9}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& -{\frac{1}{2}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& -{\frac{1}{2}}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0\\ 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}\end{array}\right]}} = {{{{{ T} _3} _9} _5} _9}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _4} _0}}} = {\left[\begin{array}{cccc} -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{\frac{1}{2}}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0\end{array}\right]}} = {{{{{ T} _3} _9} _6} _0}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _4} _1}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{\frac{1}{2}}\\ -{\frac{1}{2}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _6} _1}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _4} _2}}} = {\left[\begin{array}{cccc} -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& 0& \frac{1}{2}\\ \frac{1}{2}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}& 0\\ 0& -{\frac{1}{2}}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\end{array}\right]}} = {{{{{ T} _3} _9} _6} _2}$
${{{{{ T} _4}} {{{{{{ T} _2} _7} _4} _3}}} = {\left[\begin{array}{cccc} 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& -{\frac{1}{2}}\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\\ {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& -{\frac{1}{2}}\\ \frac{1}{2}& -{\frac{1}{2}}& -{\frac{1}{2}}& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _6} _3}$
${{{{{ T} _2}} {{{{{{ T} _2} _7} _4} _6}}} = {\left[\begin{array}{cccc} {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}& \frac{1}{2}& 0& {\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}\\ \frac{1}{2}& -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& 0& {\frac{1}{4}}{\left({{-{1}} + {\sqrt{5}}}\right)}\\ 0& 0& -{1}& 0\\ -{{\frac{1}{4}}{\left({{1} + {\sqrt{5}}}\right)}}& {\frac{1}{4}}{\left({{1}{-{\sqrt{5}}}}\right)}& 0& \frac{1}{2}\end{array}\right]}} = {{{{{ T} _3} _9} _6} _4}$